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ABSTRACT 
 
 

peech communicated is adversely affected by 
environmental noise. It is important to process the 
speech and reduce noise for better understanding. 
Speech enhancement or noise reduction is useful to 
provide comfort for human or machine listening. 

Traditional algorithms provide better noise reduction and 
better-quality speech. Due to the non-stationary nature of noise 
and the quasi-stationary nature of speech, the traditional 
methods are proven inadequate in achieving high-quality 
speech. Later statistical estimators based on Gaussian, and 
super-Gaussian Probability Density Function (PDF) 
assumption further improved the enhancement performance. 
But still, non-stationary noise nature introduces artifacts in 
processed signal and results in decreased performance. It is 
observed that neural network approaches and the factorization 
approach provide better performance even under non-stationary 
noises by proper training and large database. Different features 

result in variations in output performance under unseen noise 
and speaker conditions. It is important to understand the 
importance and advantages of traditional methods, statistical 
estimators, and neural network approaches performances. To 
select the suitable method for a required application, it is 
essential to consider the trade-off between quality and 
distortion. In this work, the importance of speech enhancement 
methods is discussed. Performance measures used for 
understanding the speech enhancement like Signal to Noise 
Ratio (SNR), Segmental SNR, Log-Likelihood Ratio (LLR), 
Weighted Spectral Slope (WSS), Perceptual Evaluation of 
Speech Quality (PESQ), Short-Time Objective Intelligibility 
(STOI), Signal to Distortion Ratio (SDR) and Mean Opinion 
Score (MOS), are given. Highlights of important results are 
discussed for analyzing better speech enhancement methods for 
the required application. In this work, performance is compared 
using objective and subjective performance measures. 
Simulation results show superior performance when neural 
network is employed in statistical estimators. 
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Nomenclature 
n –Sample number 
l- Time frame 
k- frequency bin 
t- time 
𝑥[𝑛]- Clean Speech Signal 
𝑣[𝑛]- Noise Signal 
y[n]- Noisy Speech Signal 
h(t) – Convolutive Noise 
s(t)- Clean Speech 
𝑌(𝑘, 𝑙) - Short time fourier transform coefficients of Noisy 
Speech Signal 
𝑋(𝑘, 𝑙) - Short time fourier transform coefficients of Clean 
Speech Signal 
𝑁(𝑘, 𝑙)  -Short time fourier transform coefficients of Noise 
Signal. 
	𝑆0(𝜔) – Enhanced clean speech signal in frequency domain 
𝐻0(𝜔) − Transfer Function/ Gain 
ML- Maximum Likelihood 
AR- Auto-Regressive  
MISO- Multiple Input Single Output 
SNR- Signal to noise ratio 
DNN- Deep Neural Network 
RNN- Recurrent Neural Network 
LSTM- Long Short Term Memory 
CNN- Convolutional Neural Network 
GAN- Generative Adversrial Network 
TF-Time Frequency 
STFT- Short Time Fourier Transform 
NAT- Noise Aware Training 
MFCC- Mel Frequency  Cepstral Coefficients 
ResNet- Residual Network 
SDR- Signal to Distortion Ratio 
LLR -Log-Likelihood Ratio  
WSS -Weighted Spectral Slope   
PESQ -Perceptual Evaluation of Speech Quality  
STOI - Short-Time objective Intelligibility 
 
 
INTRODUCTION 
 
Speech is one of the most organic way of human 
communication, and a powerful way for people to share ideas 
or express their wants and emotions. Speech communication is 
no longer limited to face-to-face interactions. Instead, it can 
now be performed over large distances via telecommunications 
and is even employed as a natural method of human-machine 
connection. Humans rely mostly on voice as one of their 
primary modes of communication. Speech communication has 
recently emerged as an essential component of many 
applications that involve interaction between humans and 
machines. However, the speech that is conveyed from human 
to human to machine is distorted by the noise in the 
environment (the babble, the train, the automobile, the street, 
and the restaurant) (interfering speakers and so on). Noise 
reduction / Speech Enhancement primarily aims to increase the 
quality or standard of degraded speech while simultaneously 
lowering the amount of background noise. Neural network 
techniques provide better speech enhancement results. In this 
work different speech enhancement methods performance is 
analyzed. The basic speech enhancement process in a speech 
communication system is shown in (Figure 1). Here, x[n] 
represent the clean speech and v[n] denote the noise. The effect 
of noise can be modeled as either additive or correlated. In this 
work, additive noise is considered, and the performance of the 
methods is discussed accordingly. 
 

 
Figure 1: Speech Enhancement in Communication System  

SIGNAL MODEL 
 
Noise can easily tamper with speech signals in real-world 
settings. Reverberations can be classified as either stationary 
(not changing with time) or non-stationary (changing as time is 
shifted) noise. Street noise, railway noise, babble noise (other 
speaker’s voices), and instrumental sounds are examples of 
background noise that fails into the non-stationary category 
(Zhao Y et al. 2018). The relationship between speech and 
background noise may be described as follows in the time 
domain:  
 

𝑦(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡)                      (1) 
 
Here, 𝑦(𝑡) is the noisy speech, 𝑠(𝑡) is the clean speech signal, 
ℎ(𝑡)  is the convolutional noise (also known as impulse 
response of noise), and 𝑛(𝑡) is the additive noise.  
 
Using 𝑥(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡)  as target speech, we can rewrite 
equation as (2) 

𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡)                            (2) 
 
Suppose t is the index of time. The signal can be written as 𝑦 =
[𝑦(1), 𝑦(2),… . . , 𝑦(𝑇)], whereas t is the utterance’s duration. 
We may describe the acoustic signal model of Eq. (2) in time-
frequency (TF) domain by using the short-time Fourier 
transform (STFT).  
 

𝑌(𝑘, 𝑙) = 𝑋(𝑘, 𝑙) + 𝑁(𝑘, 𝑙)                     (3) 
 
Here, 𝑌(𝑘, 𝑙),𝑋(𝑘, 𝑙), and𝑁(𝑘, 𝑙)are the STFT coefficients for 
the noisy speech signal, clean speech and noise respectively, 
and 𝑘	signifies the frequency bin index, 𝑙  is the time frame 
index. The aforementioned definitions apply to single channel 
microphones (Gao T et al. 2016). In this instance, the aim of 
the SE task is to extract the target speech signal 𝑥 from the 
cluttered speech signal 𝑦. When it comes to multichannel SE, 
the signal is stated as Eq. (4) 
 

𝑦!(𝑡) = 𝑥!(𝑡) + 𝑛!(𝑡),				𝑚 = 1,2,3, … . . ,𝑀.     (4) 
 
Here, M represents the total number of microphones in the 
array. 
 
IMPORTANCE OF TRADITIONAL SPEECH 
ENHANCEMENT METHODS 
 
The primary objective of speech enhancement is to increase the 
intelligibility or general perception quality of a distorted or 
degraded speech signal by applying a variety of algorithms and 
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audio signal processing techniques (Karjol P et al. 2016). An 
important area of speech enhancement is the improvement of 
speech that has been weakened by noise (noise reduction). It is 
utilized in products like Voice Over Internet Protocol (VOIP), 
teleconferencing systems, speech recognition software, and 
mobile phones. The speech enhancement can be achieved by 
various methods (Xu Y et al. 2015). The basic approach to 
speech enhancement varies based on the type of noise in the 
acquired speech signal. 
 
The algorithms of speech enhancement for noise reduction or 
enhancing the speech by noise can be categorized single 
channel enhancing techniques and multi-channel enhancing 
techniques as shown in (Figure 2) .The techniques are 
categorized as filtering techniques, spectral restoration, and 
model-based methods as shown in (Figure 2). 
 

 
Figure 2: Block Diagram of Neural and Statistical Based 
Networks 

 
Single Channel Enhancement Techniques 
Speech that has been corrupted by noise and captured by a 
single microphone is the only signal available to single-input 
speech improvement systems. Basic idea of reducing noise is 
subtracting noise from noisy speech (noise+clean speech) 
signal (Zhao Y et al. 2018). But the problem here is estimating 
the noise to be subtracted. Later speech enhancement systems 
(Bagchi D et al. 2018) that employ estimation of the signal-to-
noise Ratios (SNR) of the corrupted input speech are 
developed. These methods include wiener filters and statistical 
approaches (Gao T et al. 2016) which suppress the noise rather 
than cancel it out. It can be done by providing high attenuation 
in low SNR regions and low attenuation at high SNR regions. 
 
Wiener Filter 
The Wiener or iterative Filter is the speech enhancement 
algorithm that is most frequently used (Bagchi D et al. 2018) 
traditional method. In this method, a gain equation based on 
apriori SNR is obtained. If both the signal and noise 
estimations are 100% accurate, this method will estimate the 
enhanced speech by minimizing the mean squared error 
(MMSE) between the estimated speech signals and clean 
speech signals (Figure 3). The wiener gain equation given in 
Eq.5 can achieve a clean or enhanced signal. 
 

𝐻(𝜔) = C "#$(&)"!

"#$(&)"!(|*(&)|!
D                   (5) 

	𝑆0(𝜔) = 𝐻(𝜔)𝑆(𝜔) 

 

 
Figure 3: Single Input Speech Enhancement System Block 
Diagram 

Where, 𝑆  and 𝑁	 be the noise spectra and noise-corrupted 
speech spectra, respectively, 𝐻denotes the Wiener or iterative 
filter, because the spectrum of the Wiener filter has zero phase. 
The output phase for the calculation of clean signals PDS is the 
phase from the noise signal. The spectral subtraction 
algorithms are comparable to this. The spectral subtraction 
algorithms are comparable to this. The Wiener filter makes the 
assumption that noise and the desired signal are independent, 
ergodic, stationary random processes. Speech signals can be 
divided up into frames to make them appear stationary to 
tolerate, or hold, their non-stationary, in speech signal 
processing. 
 
Kalman Filter 
Kalman Filter is Linear Quadratic Estimation (LQE) which 
estimates the required component. It is an algorithm that makes 
use of series observations made overtime, including statistical 
noise when a direct measurement is additionally, it is used to 
aggregate data from several sensors when noise is present in 
order to identify the best estimate states (Figure 4). Equations 
are used to explain both the observation model and the state 
process model, 
 

𝑥(𝑚) = 𝐴𝑥(𝑚 − 1) + 𝐵𝑢(𝑚) + 𝑒(𝑚)															(6) 
𝑦(𝑚) = 𝐻𝑥(𝑚) + 𝑛(𝑚)																																									(7)   

 
In control applications, the control vector u(m) is utilized, 
whereas x(m) is the P-dimensional signal at time m, A is a P*P 
dimensional state processes at times m and m-1, B is the 
Matrix of control. 
 

 
Figure 4: Speech Enhancement using Kalman Filter 

Minimum Mean-Square-Error (MMSE) Estimation 
Methods 
Short-time Spectral Amplitude MMSE Estimate (STSA) is 
implemented in MMSE estimation approaches. It estimates real 
or complex spectral amplitudes for optimized enhancement. To 
provide the best performance, two approaches are employed to 
estimate SNR for each frequency: Maximum likelihood and 
decision-directed approach. The ratios of noisy signal to 
instantaneous SNR (power of noise) and half-wave 
rectification are used in the maximum likelihood (ML) 
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approach to estimate SNR, and the result is non-negative. By 
weighing the average of this highest probability estimate, 
decision-directed techniques calculate SNR. Both methods 
presumptively know the mean noise power spectrum 
beforehand. Cohen suggested changes to the decision-directed 
technique can increase the performance and demonstrate the 
speech’s delayed response.  
 
Restoration  
Restoration or model based speech enhancement methods 
makes use of a speech explicit stochastic model, as well as 
some prior knowledge circumstances, interfering noise(i.e. it is 
a tool for estimating probability distributions of outputs for 
random fluctuations or variations in one or more inputs 
overtime). There are numerous speech models that combine 
hidden Markov models, models of coefficient , autoregression 
(AR) models, and pitch track models. Speech enhancement 
techniques that use an AR model of speech often impose no 
restrictions on the estimated set off AR coefficients other than 
stability. 
   
Multi-Channel Enhancement Techniques 
Multiple microphones are used in multiple-input speech 
enhancement or augmentation systems to pick up the signals 
containing both the speech and noise signals. Examples include 
beam-forming, multiple-input multiple-output (MIMO), 
adaptive noise cancellation systems. For optimal performance, 
the microphones in multiple-input systems can be setup 
symmetrically. This is helpful for applications such as 
teleconference systems, in-car communication devices, hearing 
aids, and automated speech recognition. Several input noise 
reduction systems eliminate distortions brought on by 
interfering voice, echo, noise, and room reverberations by 
filtering multiple noisy signals utilized with microphones with 
desired signals.  
 
Adaptive Noise Cancellation 
It is a different method of accessing signals that have been 
distorted by additive noise or other types of signal interference 
(Figure 5). The key benefit is that degrees of noise rejection 
that other signal processing would be very difficult or 
impossible to acquire by other noise removal techniques used 
in signal processing are attainable or reachable with no priori 
estimates of noise or signals.  
 

 
Figure 5: Adaptive Noise Cancellation 

Beam-forming 
A multiple-input and single-output (MISO) is an application of 
beam-forming. It consists of multiple channels employing 
recent multidimensional or algorithms for space-time domain 
filtering, which increases the desired signal while concurrently 
reducing noise signals. When beam-forming, two or more 
microphones are arranged in a geometric array. Additionally, 
based on the signals directions of arrival, it attenuates the 
signals and filters the sensor outputs (DOA). The underlying 
concept of this method is based on the presumption that 
offering reflections is small, making it possible to combine it 
with acoustic feedback cancellation. Additionally, if the 

desired signal’s direction is known, it can be combined with 
acoustic feedback cancellation to form the correct alignment of 
the phase function present in each sensor. Beam-forming has 
uses in teleconferencing, in-car communication, strong speech 
recognition and voice communication over personal computers, 
among other hand-free communications scenarios.  
 
Multi-input multi-output (MIMO) 
The adaptive noise cancellation, adaptive beamforming, 
teleconferencing systems with multi-input multi-output 
(MIMO), stereophonic echo cancellation, and in-car MIMO 
communication systems are examples of speech enhancement 
systems using multiple inputs. 
 
There are several microphones present in the speech 
enhancement system. Each microphone’s output consists of a 
combination of voice signals, loudspeaker feedback, wall 
reflections, and noise (Figure 6). When there are M 
microphones and N sets of signal and noise sources, there are 
N×M unique acoustic channels between the microphones and 
the signal sources. The correlation of the signals emitted from 
the various sources 𝑥+(𝑚) , and those detected by the 
microphones 𝑦,(𝑚)is described by linear equations as 
 
𝑦,(𝑚) = ∑*+-. ∑/0-1 ℎ+,(𝑘)𝑥,+(𝑚 − 𝑘)𝑗 = 1,… . .𝑀.	 (8) 

 
using finite impulse response (FIR) linear filter, the channel 
response from source i to microphone j is represented by 
ℎ+,(𝑘).𝑥+(𝑚) represents the signal and noise sources, and m is 
the discrete-time index. 
 

 
Figure 6: Array of sensors 

 
Neural Network Approaches for Speech Enhancement 
An artificial intelligence method known as a neural network 
tells computers or other machines how to interpret data in a 
way that is comparable to how human brains do it. Deep 
learning is a type of machine learning that imitates the human 
brain by using interconnected neurons or nodes in a layered 
framework. It creates an adaptable technique that enables a 
computer or other machine to continuously learn from its 
mistakes. Therefore, this artificial neural network makes an 
effort to find solutions to the challenging issues. These neural 
networks are used for the purposes of applications like medical 
diagnosis, financial predictions by processing the historical 
data, chemical compound identification, and also for process 
and quality control. 
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Acoustic Features: 
Feature Methodology 
Time domain Speech 
waveforms (.wav) 

20 ms frame duration and 10 ms 
frame shift. 

Mel Frequency Cepstral 
Coefficients- MFCC and 
log MFCC 

Representation as short term 
power spectrum 

NAT (Noise Aware 
Training) 

Noisy periodogram output is 
used to obtain features. 

SNR-NAT based features 
(Noise Aware Training) 

Logarithm of a-priori and a- 
posteriori SNRs are considered 
as features 

Pitch Signal is passed through 
Gammatone filter bank and each 
sub signal is applied to PEFAC 
algorithm for pitch tracking. 

Log-Magnitude Spectrum Features that are obtained after 
operation log 
(Magnitude(FFT(Noisy Speech)) 
operation. 

Gabor filter bank feature Filter bank separates into 
different bands and process 

 
Different features are used in a variety of speech processing 
contexts are given below. Each feature is briefly described in 
this section. 
 
Waveform signal (WAV) 
In automated speech recognition, waveform signals may be 
utilised directly without any extraction of features, as 
demonstrated by (Muhammed Shifas PV et al. 2021) (ASR). 
We simply employ 320 signal samples with a 160 sample shift, 
or 20ms time frames with a 10ms frame shift, to evaluate this 
feature in our system. 
 
Pitch-based feature (PITCH) 
In several research on speech separation, pitch has been used as 
a crucial cue for acoustic scene interpretation. The noisy signal 
is sent through a 64-channel gammatone filterbank to 
determine the pitch-based feature. Following that, each sub-
band signal is subjected to the PEFAC pitch tracking algorithm. 
We extract 6 dimensional characteristics using the observed 
pitch in the manner reported in (Wany Y et al.2013). We 
combine all 64 channel’s features in the end. 
 
Log-magnitude spectral feature (LOG-MAG) 
The noisy voice spectrogram serves as the basis for computing 
the LOG-Mag feature. Particularly, the magnitude responses of 
the STFT are subjected to a log operation. 
 
Perceptual linear prediction feature (PLP) 
PLP focuses on suppressing  individual speaker-specific 
characteristics within a spectrum. The PLP is derived by 
utilizing the power spectrum, which is calculated, translated to 
the bark scale, downsampled, and filtered using a critical band 
masking curve. Subsequently, the downscaled spectrum 
undergoes pre-emphasis, followed by compression through an 
intensity-loudness power law and a curve operation involving 
cubic roots. The resulting spectrum is subjected to a Discrete 
Inverse Fourier Transform (DIFT). The final cepstrum is 
obtained by solving for the Twelfth-order autoregressive 
coefficients, which are subsequently converted to the cepstral 
all-pole model coefficients. 
 
Amplitude modulation spectrogram (AMS) 
AMS’s primary aim to degrade the full wave corrected envelop 
of the noisy signals by a factor of 4. The signal is then divided 
into 32 ms frames and given a 10 ms frame shift. A 256-point 
FFT is used after the signal in each frame is windowed using a 

Hann function. The modulation responses are compounded by 
15 evenly centred triangular windows between 15.6 and 400 
Hz. The AMS feature is made up of the 15 replies that 
followed (Morten Kolkek et al. 2016). 
 
Gabor filter bank feature (GFB) 
A bank of 41 spectro temporal Gabor filters are used to process 
each of the sub-band signals in the log-mel-spectrogram of the 
mixed signal. The correlations between the feature components 
are then reduced by carefully choosing a subset of the channels. 
 
Mel-frequency cepstral coefficients (MFCC) 
A common aspect in voice processing is MFCC. The 
spectrogram of the input signal is computed in order to 
calculate MFCC. The power spectrum is then compressed and 
transformed to the mel scale. Eventually, use DCT and the 
MFCC feature is represented by the first 31 cepstral 
coefficients. 
 
Log-mel-filter bank feature (LOG-MEL) 
The LOG-MEL characteristic is commonly employed in ASR 
and speech separation. A 40-channel mel filter bank processes 
the spectrogram of the mixed signal. The outcome of the LOG-
GEL feature is log operation.  
 
Relative autocorrelation sequence MFCC (RAS-MFCC) 
RAS-MFCC computes autocorrelation sequences for each time 
frame to give a noise-resistant feature. A high-pass filter is then 
used. The MFCC extraction procedure receives the filtered 
sequences as input, producing the RAS-MFCC feature. 
 
Phase autocorrelation (PAC-MFCC) 
The phase trajectory of the signal over time is the foundation of 
PAC-MFCC. The MFCC method is used to calculate the PAC-
MFCC by calculating the phase angle between the noisy signal 
and its shifted variants. 
 
SNR-NAT features      
SNR NAT features are developed based on apriori SNR and a 
posteriori SNR. The utilization of these features in a neural 
network provides better results. 
 
Deep learning methods 
We examine the latest deep learning approaches designed to 
address the speech enhancement (SE) model problem, such as 
DNN, DAE, RNN-LSTM, CNN, and GAN. 
 
Based on Deep Neural Network (DNN) 
One of the most popular models for SE is the Deep Neural 
Network (DNN), also known as the Feedforward Fully 
Connected Layer or the Multilayer Perceptron (MLP) with 
Multiple Hidden Layers (Karjol P et al. 2016). Because every 
node in the layer has a connection to every other node in the 
layer above, the network is known as a fully connected 
network. DNN has relatively huge parameters as a result. A 
voice improvement method employing several DNN-based 
systems was developed in (Karjol P et al. 2016). Each of the 
DNNs employs a gating network, which assigns weights to 
aggregate the outputs of the n DNN and contribute to the final 
improved speech (Figure 7). The model 𝑛 = 4 layers with a 
depth of three each. On the TIMIT corpus, an average SNR of -
5 to 10 dB yields a visible noise PESQ of 2.65 and an unseen 
noise PESQ of 2.19. In contrast, the DNN masking-based 
techniques in (Xu Y et al. 2015) might achieve a PESQ of 
2.705 or higher. To further develop DNN, a speech 
intelligibility metric was included in (Zhao Y et al. 2018). The 
results revealed an average PESQ of 1.99 and an SNR that was 
under matched or mismatched. Another publication by (Bagchi 
D et al. 2018) also additionally tried to improve the model by 
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training the speech enhancer using both mimic loss and the 
conventional criterion. The mean square deviation of the 
results of two spectral classifiers is known as the mimic loss. 
The enhanced speech that DNN generates typically deteriorates 
in low SNR scenarios, despite the fact that it has been 
effectively utilised as a regression model foe SE. A framework 
for progressive learning for DNN-based SE was developed by 
(Gao et al. in 2017). The WSJ corpus was used to train the 
model on multi-SNR and single-SNR settings, and it was tested 
with heard and unseen noises including babbling, factory, and 
destroy engine. PESQ scores of 1.93 for training with a single-
SNR and 1.82 for training with multi-SNR were averaged as a 
result (SNR -5 and 5dB). 
 

 
Figure 7: Block Diagram of DNN Based SE system 

Based on Denoising Autoencoder (DAE) 
In the majority of work (Feng X et al. 2014), DNN-based deep 
autoencoder with same input and output dimensions. For 
representation learning, deep autoencoders are frequently 
employed. The Denoising autoencoder is a denoising criteria 
used in the spectral mapping approach (DAE), was first 
presented by (Lu et al. 2014) then (Feng X et al. 2014) 
extended this model to include deep DAE . The model 
performed a mapping from noise to cleanness. Mel-spectral 
speech is spoken. DAE is initially trained to convert the 
damaged input 𝑦	into a concealed representation 𝑧created with 
the encoder specified in Eq. (9). 
 

𝑧 = 𝜎(𝑊𝑦 + 𝑏),                                     (9) 
 

Here, 𝜎  represents the non- linear function of activation. 
Weighted matrix and bias vector, respectively are denoted by 
𝑊	and 𝑏. The output representation 𝑧 is then changed back into 
an input 𝑦 that has been rebuilt using the decoder described in 
Eq. (10) 
 

�́� = 𝜎(�́�𝑧 + �́�)                                    (10) 
 

Here,�́� and �́� are, respectively, the suitable scaled parameters 
of 𝑊	and 𝑏 . The loss of MSE between the input 𝑦  and its 
recreated input 𝑦 is used to train the DAE. However, the DAE 
network is limited in its ability to learn short-term information. 
Consequently, it is common practice for the network’s training 
with a limited condition window. The temporal issue has 
recently been addressed using DAE and convolutional layers.  
 
Based on Recurrent Neural Network (RNN)-Long short-
term memory (LSTM) 
There are recurrent neural networks (RNN) and Long short-
term memories (LSTM) that can manage context information 
when working with a sequence- based data, such as a speech 
signal. This network uses information from the preceding 
hidden layer in addition to the current input. The inspiration for 
more recent work by (Gao T et al. 2018) came from curricular 
learning. To enhance the performance of DNN-based speech in 
low SNR environments, they suggested a progressive learning 
architecture using the LSTM network. The last layer of each 

target layer is designed to learn smoother transition in speech, 
with improved SNR. Additionally, LSTM- RNN has been used 
to solve the issues with reverberation, multichannel noisy 
speech (Kinoshita K et al. 2020), and extremely non-stationary 
additive noise (Wollmer M  et al. 2013). In (Wollmer M  et al. 
2013) bottleneck features produced by the bidirectional LSTM 
network surpass manually created features like MFCC (BN-
BLSTM). While employing MFCC, using BN-BLSTM, the 
WA is 43.55% compared to the average WA of 38.13%. The 
use of LSTM-RNN has significantly enhanced speech 
processing systems. However, it is well known that learning 
the RNN parameters is challenging and time-consuming or 
takes a lot of resources. 
 
Based on Convolutional Neural Network (CNN) 
Convolutional neural network (CNN) has drawn a lot of 
interest from speech researches (Pandey A et al. 2019). CNN 
can use a set of local connections to detect patterns in the 
adjacent frames using spectrogram characteristics. Additionally, 
it has reportedly been shown to be more efficient than a typical 
feed-forward neural network and more effective than RNN. 
Additionally, here are more recent CNN-based SE for ASR 
application works (Rownicka J et al. 2020), (Kinoshita K et al. 
2020). CNN- Based voice denoising based on masking 
estimation is proposed (Kinoshita K et al. 2020). This approach 
draws inspiration from the efficiency of temporal convolutional 
networks for voice separation (Conv-TasNet). They modified 
the network design for the Denoising TasNet task, which is 
carried on in the TF and temporal domains. This study also 
looked into multi-task loss, which predicted speech and noise 
as two outputs. The network with multi-task loss performs best 
in the time domain. Additionally, a suggested extension of 
CNN that makes use of the residual network (ResNet) has been 
proposed (Kinoshita K et al. 2020). Since ReNet’s architecture 
is compatible with the SE task of reconstructing the input 
signal by removing the residual noisy signal, an enhanced 
result can be obtained. 
 
Additionally, (Rethage D et al. 2018) suggested an end-to-end 
learning method for voice denoising that makes advantage of 
direct waveform processing. In (Rethage D et al. 2018)  the 
new WaveNet network structure served as the model’s 
foundation. The network is made up of a number of dilated, 
non-causal convolutional layers that learn under supervision by 
minimising regression loss. The receptive field created by the 
dilation parameters can greatly reduce the computational 
complexity. The total outcomes demonstrate that, with a 23% 
relative improvement in MOS quality, CNN is superior to a 
traditional Wiener filter. 
 
Based on Generative Adversarial Network (GAN)  
To further boost the performance of model enhancement, 
Generative adversarial networks (GAN) have attracted 
increasing attention. GAN consists of a  generating network 
(G) plus a discriminator network (D). GAN training, 
convolutional layers are frequently used (Li X and Horaud R 
2019),( Kinoshita K et al. 2020) or fully connected layers 
(Donahue C et al. 2018).  (Rownicka J et al. 2020) the one who 
initially presented speech improvement based on GAN training 
(SEGAN). The generator network gains the ability to translate 
characteristics of loud speech into clean speech. Following that, 
the binary classifier discriminator network decides whether the 
samples come from the clean voice (real) or the improved 
speech (fake).  
 
The generator tries to modify the distribution to produce better 
outputs based on the results of the discriminator until the 
discriminator is unable to tell whether the outputs are real or 
fake. GAN training, however, is challenging and unstable 
(Figure 8). Numerous more efforts were made to enhance 
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SEGAN’s performance (Li X and Horaud R 2019), (Kinoshita 
K et al. 2020), (Donahue C et al. 2018). By (Baby D et al. 
2018) implemented a gradient-penalized relativistic loss 
function at the discriminator network. This research 
demonstrated that a cleaner speech might be produced by a 
better discriminator. The approach additionally used gradient 
penalties to stabilise the training. By (Phan H et al. 2020) 
suggested to utilise more than one generator rather than just 
one. The main objective was to do multi-stage improvement 
mapping gradually. In terms of PESQ, CSIG, CBAK, COVL, 
and SSNR, the suggested approach out performed SEGAN. 
While (Xu Z et al. 2020) made an effort to change the SEGAN 
architecture in order to provide features. Because it is designed 
for ASR applications, unlike SEGAN, the work uses log-Mel 
characteristics rather than waveforms in its implementation. 
 

 
Figure 8: Architecture of a GAN for Enhancement of speech 

Cross guided CNN based neural network is developed in 
(Zhang W et al. 2023) for reduced loss. To reduce the 
mismatch between testing and training the generalized 
networks are developed (Gonzalez et al. 2023). Composite cost 
function based wiener filter is developed to reduce noise 
(Thaleiser S and Enzer G 2023). To focus on wide band speech 
signals and its enhancement neural network structure is 
proposed (XU Z et al.2023). 
 
Some works (Phan H et al. 2020), (Soni MH et al. 2018) 
attempted to apply GAN in the masking-Based technique, even 
though it is becoming more and more popular in the mapping-
based method. GAN is used in (Phan H et al. 2020) to 
anticipate the mask. The vanilla GAN is enhanced with a 
regularised objective MSE function. The outcomes 
demonstrate that PESQ and STOI outperform a recent GAN-
based voice enhancement. Various approaches and the 
outcomes are listed in Table 1. 
 

Table 1: Summary of Neural and Statistical Based Networks methods for Speech Enhancement 
Method Features Dataset Evaluation 

Metrics 
Results 

DNN CEGM 
 

CHiME-4 WER WER: 19.39%(Noisy), 25.70(OM-LSA), 
24.46(DNN) 

 Dropout, Global 
Variance Equalization 

Aurora2, TIMIT, NOISEX-
92 corpus 

PESQ, LSD, 
SSNR 

PESQ: 3.39(RBM), 3.40(Random) 
LSD: 2.90(RBM), 2.27(Random) 
SSNR: 8.42(RBM), 8.44(Random) 

 MFMPDR, SPP, IFC WSJ0 corpus, NOISEX92, 
Aurora 

PESQ PESQ: 0.22(MFMPDR), 0.28(WG) 

 SE Algorithm Akustiske Database for 
Dansk, TIMIT 

STOI, PESQ, 
BBL, SNR 

STOI: 0.023, PESQ: 0.878, BBL: 0.033, 
SNR: 0.00(0.968) 

 IMCRA, BGRU CHiME-4 WER WER: 19.98% 
 (Log/power) mag. NOISEX + IEEE Corpus  PESQ, SDR, 

STOI 
Average results with mismatched SNR (-
3 to 3 dB) PESQ is 1.99, SDR is 11.35, 
and STOI is 90.61%. 

 (Log/power)   TIMIT + noises from 
Aurora 

Seg SNR, STOI, 
PESQ 

Average best PESQ scores for seen noise 
are 2.65 and unseen noise are 2.19. 

 LPS WSJ+ musical noises SSNR, STOI, 
PESQ 

PESQ 1.93 was evaluated on unseen 
noise, while PESQ 1.82 was used for 
training with multiple SNRs. 

DAE MFCC CHiME-2 WER 34% Error rate. 
RNN-
LSTM 

LPS (log-power spectral) WSJ + surrounding and 
musical noises 

SDR, STOI SDR of average results: 9.46 and STOI: 
0.86 

 MFCC, Bottleneck 
features (BN) 

Spontaneous speech + 
CHiME noises 

WA BN-BLSTM: 43.55%, average WA using 
MFCC: 38.13%. 

 Raw signal SSN + TIMIT +NOISEX  SI-SDR, PESQ, 
STOI 

Results indicate that Autoencoder CNN 
better performed SEGAN in terms of 
performance. 

 (Log) Mel Aurora-4, AMI WER 8.31%(WER) on Aurora-4 
 Raw Signal DEMAND + Voice Bank MOS, SIG, 

BAK, OVL 
3.60 MOS is attained. When compared to 
the Wiener filter, overall outputs are 
superior. 

CNN LPS, Log Mel-filterbank HINT, TIMIT, LibriSpeech 
corpus, DCASE 2017 

PESQ, LSD, 
SegSNR 

PESQ: 1.6024 
LSD: 12.0219 
SegSNR: 5.8420 

 (Log/power)mag, raw 
signal 

CHiME-4,Aurora-4 WER, SDR WER 8.3% (actual data) and 10.8% 
(simulated), SDR: 14.24, and 6.3% for 

 

   

 

Inpu
t 

Output G 

D 

(Fake/R
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CHiME-4. 
 (Log/power) mag Grid Corpus +CHiME-3 

noises 
PESQ, STOI For heard noises, PESQ is 2.60 and STOI 

is 0.70, and for unknown noises , it is 
2.63 and 0.74, respectively. 

CNN- E2E SSDRC, FFTNet Raw Speech Samples SIIB SIIB: 12.81(Unprocessed), 
18.65(MBSSDRC), 
23.48(DnsFFTNet+SSDRC), 
26.56(Casual FFTNet), 34.51(non-casual 
FFTNet) 

GAN CGMM, MT-GAN, IRM TIMIT SSNR, PESQ, 
STOI 

SSNR: -11.6167PESQ: 0.1369 
STOI: 0.1046 

 Raw Signal Voice Bank + DEMAND PESQ, CSIG, 
CBAK, COVL, 
STOI, SSNR 

2.39 (PESQ), 3.55 (CSIG), 3.11 (CBAK), 
2.93 (COVL), 8.72 (SSNR) 

 (Log) Mel WSJ + surrounding and 
musical noises 

WER 17.6% Error rate 

 Raw Signal DEMAND + Voice Bank  Seg SNR, STOI, 
PESQ 

Seg SNR:17.68, STOI: 0.942, PESQ:2.62 

HNN CNN, LTSM, PSM TIMIT, IEEE Corpus, 
NOISEX-92 

PESQ, SSNR PESQ: 1.59SSNR: 1.03 

ERNN Speech PSD 
Uncertainty, posteriori 
SPP 

DEMAND + Voice Bank PESQ, CBAK, 
CSIG, COVL 

PESQ: 2.49, CBAK: 3.02, CSIG: 3.63, 
COVL: 3.03 

MMSE MOSIE, Super-Gaussian 
Speech Estimator 

TIMIT PESQ PESQ: 0.43(NON-MLSE), 0.41(DNN), 
0.48(NMF)  

     
     
Challenges of Speech Enhancement 
Recent advancements in artificial intelligence (AI) and 
machine learning (ML) have yielded excellent results in 
addressing speech-related problems. These developments 
demonstrate the capability to effectively eliminate various 
types of background noise, such as dog barking, kitchen noise, 
environmental sounds, music, babbling, and traffic, showcasing 
the enhanced performance of speech-related applications. 
Compared to conventional statistical signal processing methods, 
which typically only effectively attenuate quasi-stationary 
noise, this is an interesting novelty. However, ML-based 
speech improvement still has a long way to go before it is 
sufficiently developed to be commercialized, and it must 
overcome the following challenges: 

1. Speech Quality: Although AI-powered voice 
improvement has excellent suppressing capabilities, 
speech quality frequently suffers as a result. More study 
is focused on enhancing data collection and expansion, 
investigating optimization objectives, and enhancing 
network models in order to improve voice quality. For 
example, we employed convolutional-recurrent network 
topologies for voice augmentation in one of our early 
experiments. 
 

2. Inference efficiency: Very massive neural network 
models, which have prohibitively high inference 
complexity and occasionally include processing latency, 
are frequently used to produce great audio quality. In 
order to execute these models on edge devices with 
limited resources, research is actively being done to 
lower the model size, complexity, memory footprint, 
and processing time. For enhancement of speech and 
voice activity identification, we have previously 
investigated bit-precision scaling as a method of 
improving model efficiency. We also looked into tiny 
recurrent networks to see whether they might be 
improved to meet real-time interference restrictions. 

 
3. Unsupervised learning: Supervised learning produces 

the most effective results in machine learning i.e. In 
order to train a speech enhancement model, a dataset 
comprising both clean and noisy target speech must be 
prepared. The drawback of this is that a robust dataset 

for all scenarios experienced in reality would need a lot 
of work. However, situations for which you are not 
prepared. As a ground truth is not necessary and 
theoretically, a model may be developed to adjust to 
invisible noise on-the-fly, unsupervised learning could 
assist to solve this issue. Recurrent networks were used 
in our initial effort to adapt a voice enhancement 
algorithm to the input data via reinforcement learning. 

 
 
EVALUATION METRICS 
Subjective and Objective measures can be used to evaluate the 
impact of Speech Enhancement (SE) systems. 
 
Subjective Measures: Objective assessments include unbiased 
measurements of signal distortion, mean opinion score (MOS), 
and background noise intrusiveness (BAK). A scale from 1 to 5 
is used for SIG, BAK, and MOS, with a higher number being 
preferable.  
 
Objective Measures: The segmental Signal-to-noise ratio 
(Seg-SNR), Signal-to-Noise ratio (SNR), distances measures, 
source-to-distortion ratio (SDR), perceptual evaluation of 
speech quality (PESQ), short-time objective intelligibility 
(STOI), Log-Likelihood Ratio (LLR) and Weighted Spectral 
Slope (WSS) are examples of common objective metrics. The 
discuss of all the performed measures indicates follows: 
 
Signal-to-Noise Ratio (SNR):  
The ratio of signal to noise power is Known as the signal-to-
noise (SNR) ratio and is measured in decibels (dB).  
 
Segmental Signal-to-Noise Ratio (Seg SNR): 
Average value of each SNR ratio or the average SNR values of 
brief parts are calculated rather than the entire signal (15-20ms) 
is known as Segmental SNR Ratio. 
 
In order to calculate the segmental SNRseg measure,  
 

𝑆𝑁𝑅234(𝑑𝐵) =
.1
5
∑56.!-1

∑"#$"%&
'("# 8!(9)

∑"#$"%&
'("# [8;(9)68(9)]!

         (11) 
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Where 𝑥(𝑛) is the clean speech and 𝑥S(𝑛) is enhanced speech 
i.e. Processing signal or approximate clean speech, M is the 
total number of frames in the signal and L is frame length. 
 
Perceptual Evaluation of Speech Quality (PESQ): 
PESQ is the series of standards that includes a test process for 
an automated evaluation of the speech quality as perceived by a 
telephone system user. PESQ is used by telecom operators, 
phone manufacturers for objective voice quality testing. The 
higher the value of PESQ, which ranges from -0.5 to 4.5, the 
better the quality of the speech. 
 
Short-time Objective Intelligibility (STOI): 
A measure of intelligence that has a strong correlation with the 
intelligibility of speech signals that have been damaged by 
additive noise, single or multi-channel noise reduction, binary 
masking. The STOI-measure, which is a function of the clean 
and degraded speech signals, is invasive. 
 
Signal-to-Distortion Ratio (SDR): 
When determining how much distortion is present in a signal, 
the Signal-to-Distortion ratio is employed as a metric of the 
signal’s quality. It is a measure of how much distortion is 
present in relation to the original, undisturbed signal power. 
Typically, the SDR formula compute as: 
 

𝑆𝑁𝑅(𝑑𝐵) = 10U /_2+49>?
/_@+2ABCA+B9

V                        (12) 
 

Here, Power of the original signal, and undistorted signal 
represents the P_signal and Power of the distortion existing in 
the signal represents the P_distortion. It is expressed as in 
decibels (dB), and the greater the SDR, the higher the quality 
of the signal. A greater SDR represents that the original signal 
is being precisely retained and that there is less distortion of the 
signal and a lower SDR represents that there is more distortion 
in the signal and that the original signal is being more 
distortion.  
 
Log-likelihood Ratio Measure (LLR): 
Log-likelihood Ratio objective measures are used to assess the 
effectiveness of the proposed technique for each speech frame. 
 

𝑑DDE = U>)E*>)
+

>*E*>*+
V                                    (13) 

 
Where is the Linear Prediction Coefficient (LPC) vector of the 
unaltered (original) speech frame, represents the 
autocorrelation matrix, and is the Linear Prediction Coefficient 
(LPC) vector of the improved (estimated) speech frame. The 
individual frame LLR data were averaged to provide the final 
average LLR value. 
 
Weighted Spectral Slope (WSS): 
Weighted spectral slope is computed as  
 

𝑑F22 =
.
5
∑56.!-1

∑,-(& F(,,0)H2.(,,0)62/(,,0)I
!

∑,-(& F(,,0)
        (14) 

 
Where, 𝑤(𝑗, 𝑘) represents the corresponding weights,𝑗 denotes 
the frequency, 𝑘  denotes the number of frames. 
𝑠J(𝑗, 𝑘) and 𝑠K(𝑗, 𝑘)  represents the spectral slopes for 𝑗AL 
frequency at the k number of original speech signal and 
processing or enhanced speech signal respectively.  
 
All of these actions are taken to analyze the clarity and quality 
of the speech word. Aside from that, word accuracy (WA) or 
word error rate (WER) is a common metric to specifically 
assess the effectiveness of ASR systems. 

CHALLENGES AND OPPORTUNITIES 
 
The meaning of voice or speech enhancement is continuously 
becoming more general as the applications are expanded. 
(Figure 9) indicates the categorization of speech enhancement 
methods and (Figure 2) shows statistically and neural networks 
based techniques are the fundamental foundations for the 
categorization. It should obviously incorporate the signals 
reinforcement from the deterioration of competing speech or 
even from the degradation of the signals filtered from. More 
difficult than the traditional noise reduction challenge are the 
signal separation and dereverberation problems. The voice that 
a talker emits and that a microphone picks up in a room and in 
a hands-free situation comprises signal in both the direct and 
delayed paths copies and once the source signal has been 
attenuated due to reflections from the objects and room 
limitations. Reverberation, also known as spectral distortion 
and echo, will be introduced into the observation signal as a 
result of these multipath channels. The ability of people who 
have normal hearing to recognize and comprehend one speaker 
among many other speakers, or in the middle of a cacophony of 
background noise and discussion, must be determined. The 
cocktail party effect is the capacity to sort and choose one 
speaker’s speech patterns from among many others. Hence, the 
impact of a cocktail party. Although it is widely known that 
listening in these circumstances with one ear is uncomfortable 
and that it is challenging to focus on one specific signal when 
several voice signals are present all around at once, it will be 
done. When doing blind source separation with several 
microphones, we have a tendency to try to distinguish between 
sounds that are originating from entirely opposite directions at 
the same time. The cocktail party effect may be able  to 
distinguish the relevant signal from the background noise, 
which is not exactly what blind source separation techniques 
achieve. 
 

 
Figure 9: Traditional Speech Enhancement Methods 

 
CONCLUSION 
 
Outline of speech enhancement techniques based on statistical 
approaches and neural network approaches are discussed, 
together with their advantages and disadvantages. It is 
discussed how classical, statistical estimators and neural 
networks advanced the speech processing and quality 
improvement. In this work the choice of features, neural 
network models and performance measures for required 
application is discussed. 
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